domingo, 21 de enero de 2018

Cromatografía y Fluorescencia Bio V Ntra. Biciego

La fluorescencia es un fenómeno foto-físico de las moléculas de clorofila que permite estudiar la función del fotosistema II (PSII) durante el transporte electrónico en la fotosíntesis y la sensibilidad del PSII al daño que puede sufrir por efecto de diferentes estreses, y las consecuencias que esto tiene en el proceso global de la fotosíntesis

Por tanto, la fluorescencia de clorofilas es una técnica muy útil que permite hacer un seguimiento al proceso de fotosíntesis en general. Se emplea en diferentes estudios:
§   Fisiología de la fotosíntesis
§  Ecofisiología
§  Biología Marina y Acuática
§  Horticultura
§  Agricultura
§  Fisiología de Post-cosecha
§  Mejora Vegetal
§  Genética

¿Qué es la fluorescencia?
Los electrones que forman parte de un átomo o una molécula tienden a permanecer en un estado de menor energía (estado fundamental). Si un átomo absorbe un fotón con suficiente energía, un electrón puede saltar a un orbital de mayor energía. Este estado de mayor energía es más reactivo que el estado fundamental y puede participar en reacciones químicas que son imposibles para el estado fundamental. Esto es muy importante para la fotosíntesis. Incluso en ausencia de reacciones, el estado excitado es inestable y puede volver a su estado fundamental por diferentes vías, incluido la emisión de un fotón. El fotón emitido es la fluorescencia.

La energía luminosa absorbida por las moléculas de clorofila en la hoja tiene tres posibles destinos: La mayor parte se va a usar en fotosíntesis (energía fotoquímica). Una pequeña parte de la energía, la que no puede emplearse en fotosíntesis, se disipa en forma de calor o bien puede ser re-emitida como luz (en forma de fluorescencia) con el fin de que el exceso de energía no dañe a los fotosistemas. La cantidad de energía emitida como fluorescencia es muy pequeña (1-2% del total de luz absorbida).

En condiciones normales, la fotosíntesis predomina sobre los otros procesos, pero en condiciones de estrés, la planta no puede trabajar a pleno rendimiento y el exceso de energía debe disiparse. Como consecuencia, los procesos no fotoquímicos aumentan.
Para un análisis de fluorescencia es conveniente adaptar a la planta a condiciones de oscuridad durante unos 10-15 minutos.

Cuando una hoja se transfiere desde la oscuridad a la luz, los centros de reacción del PSII se van cerrando progresivamente. Esto da lugar a un aumento en el rendimiento de la fluorescencia de las clorofilas. A partir de este momento, los niveles de fluorescencia disminuyen de nuevo. Este fenómeno se conoce como quenching y se explica  de dos maneras: Primero, se produce un incremento en la tasa de transporte de electrones fuera del PSII. Esto es debido a la activación mediada por luz de los enzimas implicados en el metabolismo del carbono y en la apertura de los estomas. Este tipo de quenching se denomina “quenching fotoquímico”. Al mismo tiempo, se produce un aumento de la eficiencia en la que la energía se convierte en calor. Este último proceso se denomina “quenching no fotoquímico” (NPQ).

Para el análisis de la fluorescencia de clorofilas se han definido y calculado diferentes coeficientes para cuantificar el quenching fotoquímico y no fotoquímico. Para los procesos fotoquímicos, el parámetro más útil para medir la eficiencia del PSII es el rendimiento cuántico del PSII (ØPSII o Y(II)), que mide la proporción de luz absorbida por la clorofila asociada al PSII  que es usada en procesos fotoquímicos. Otro parámetro ampliamente usado es el quenching fotoquímico (qP).  Aunque es muy similar al ØPSII , el significado del qP es algo diferente. En este caso, el qP hace referencia a la proporción de centros de reacción del PSII que están abiertos. ØPSII y qP están interrelacionados con un tercer parámetro, Fv/Fm, que mide la eficiencia del PSII, es decir, mide el rendimiento cuántico si todos los centros de reacción del PSII estuviesen abiertos.
Los procesos no fotoquímicos (NPQ) están relacionados con la disipación de calor, y su escala varía desde 0 hasta el infinito. El NPQ tiene varios componentes, pero el más importante es el denominado qN (coeficiente del quenching no fotoquímico). Este parámetro varía en una escala desde 0 a 1 y está relacionado con la disipación de calor mediante el ciclo de las xantofilas. NPQ y qN son indicadores de estrés y han demostrado ser parámetros muy sensibles para la detección temprana de condiciones de estrés mediante imagen de fluorescencia. En este sentido se pueden usar para valorar situaciones de estrés abiótico como biótico, pudiendo analizar el efecto de estreses ambientales en el cloroplasto, incluso antes de que se observen señales de síntomas en las hojas 


En el siguiente enlace puedes descargar la práctica.





Ärea foliar y fotosintesis Bio IV Mtra. Biciego

¿Qué es el IAF? El índice de área foliar (IAF) es la expresión numérica adimensional resultado de la división aritmética del área de las hojas de un cultivo expresado en m2 y el área de suelo sobre el cual se encuentra establecido, también expresado en m2. El IAF permite estimar la capacidad fotosintética de las plantas y ayuda a entender la relación entre acumulación de biomasa y rendimiento bajo condiciones ambientales imperantes en una región determinada.

La determinación del área foliar es fundamental en estudios de nutrición y crecimiento vegetal, con ésta se puede determinar la acumulación de materia seca, el metabolismo de carbohidratos, el rendimiento y calidad de la cosecha (Bugarin et al., 2002). Es una medida necesaria para evaluar la intensidad de asimilación de las plantas, parámetro de gran relevancia cuando se efectúa el análisis de crecimiento de un cultivo. Radford (1967), plantea que para aplicar las técnicas de análisis de crecimiento en estudios con plantas se requiere como mínimo una medida de la cantidad de material vegetal presente (peso seco) y una medida del sistema asimilatorio (área foliar) de las plantas, y a partir de estas medidas se pueden calcular los diferentes parámetros de un análisis de crecimiento sencillo. Existen diversos procedimientos para la determinación del área foliar, desde modernos y automáticos equipos como planímetros ópticos, hasta laboriosos y tediosos métodos de laboratorio como el planímetro mecánico. Cuando las plantas son consideradas de manera individual, las medidas lineales de la hoja pueden utilizarse en relaciones funcionales (Simón y Trujillo, 1990).

El área foliar guarda relaciones significativamente consistentes con sus medidas lineales, las cuales pueden establecerse mediante ecuaciones de regresión, como lo reportaron Elsner y Jubb (1988), quienes estimaron el área foliar mediante modelos lineales simples en hojas de vid. Ascencio (1985), determinó el área foliar en plantas de frijol (Phaseolus vulgaris L.), yuca (Manihot esculenta Crantz) y camote (Ipomoea batatas L. Parr), utilizando dimensiones lineales y peso seco de hojas. De igual forma, Fonseca et al. (1994), estimaron el área foliar en hojas de mangabeira (Hancornia speciosa Gom). Asimismo, Rajerdran y Thambura (1987), estimaron el área foliar mediante modelos lineales en sandía. Estas ecuaciones se pueden utilizar para estimar el área foliar a partir de esas medidas lineales fácilmente obtenibles (Ray y Singh, 1989).  

En la siguiente liga puedes descargar el formato de la práctica.



.

lunes, 15 de enero de 2018

Práctica No. 7 Respiración Bio IV Mtra. Biciego

Durante la respiración celular, una molécula de glucosa se degrada poco a poco en dióxido de carbono y agua. A lo largo del camino, se produce directamente un poco de ATP en las reacciones que transforman a la glucosa. No obstante, más tarde se produce mucho más ATP en un proceso llamado fosforilación oxidativa. La fosforilación oxidativa es impulsada por el movimiento de electrones a través de la cadena de transporte de electrones, una serie de proteínas embebidas en la membrana interna de la mitocondria.
Estos electrones provienen originalmente de la glucosa y se trasladan a la cadena de transporte de electrones con ayuda de los acarreadores de electrones NAD+ y FAD, que se convierten en NADH y FADH2 cuando adquieren esos electrones. Para ser claros, esto es lo que sucede en el diagrama anterior donde dice NADH o FADH2. La molécula no aparece de la nada, solo se convierte a la forma en que transporta electrones:
NAD+ + 2e - + 2 H+      NADH + H+
FAD + 2e-  + 2 H+      FADH2

Para ver cómo una molécula de glucosa se convierte en dióxido de carbono y cómo se recolecta su energía en forma de ATP y NADH y FADH2 en una de las células de tu cuerpo, vamos a ver paso a paso las cuatro etapas de la respiración celular.

Glucólisis. En la glucólisis, la glucosa —un azúcar de seis carbonos— se somete a una serie de transformaciones químicas. Al final, se convierte en dos moléculas de piruvato, una molécula orgánica de tres carbonos. En estas reacciones se genera ATP y NAD QUE se convierte en NADH.

Oxidación del piruvato. Cada piruvato de la glucólisis viaja a la matriz mitocondrial, que es el compartimento más interno de la mitocondria. Ahí, el piruvato se convierte en una molécula de dos carbonos unida a coenzima A, conocida como acetil-CoA. En este proceso se libera dióxido de carbono y se obtiene NADH.

Ciclo del ácido cítrico. El acetil-CoA obtenido en el paso anterior se combina con una molécula de cuatro carbonos y atraviesa un ciclo de reacciones para finalmente regenerar la molécula inicial de cuatro carbonos. En el proceso se genera ATP,  NADH y FADH2, y se libera dióxido de carbono.

Fosforilación oxidativa. El NADH y FADH2 producidos en pasos anteriores depositan sus electrones en la cadena de transporte de electrones y regresan a sus formas "vacías" (NAD y FAD) El movimiento de los electrones por la cadena libera energía que se utiliza para bombear protones fuera de la matriz y formar un gradiente. Los protones fluyen de regreso hacia la matriz, a través de una enzima llamada ATP sintasa, para generar ATP. Al final de la cadena de transporte de electrones, el oxígeno recibe los electrones y recoge protones del medio para formar agua.


La glucólisis puede ocurrir en ausencia de oxígeno en un proceso llamado fermentación. Las otras tres etapas de la respiración celular —la oxidación del piruvato, el ciclo del ácido cítrico y la fosforilación oxidativa— necesitan de la presencia de oxígeno para suceder. Solo la fosforilación oxidativa usa oxígeno directamente, pero las otras dos etapas no pueden proceder sin la fosforilación oxidativa. 

En la siguiente liga puedes descargar el formato de la práctica.




¿Respiran las plantas? practica No. 6 Bio V Mrta. Raquel Biciego

Función: el metabolismo vegetal
La función principal de los cloroplastos dentro de la célula es la de llevar a cabo el metabolismo de la planta. Este metabolismo es fotosintético, o más exactamente fotolitoautótrofo oxigénico, es decir, fotótrofo por la captación de la energía solar por medio de la absorción de luz, autótrofo o sintético por la capacidad de sintetizar sus propias moléculas orgánicas a partir de moléculas inorgánicas más simples (fijando el dióxido de carbono), litótrofo por el uso de sustancias inorgánicas como agentes reductores (disociación del agua) y oxigénico por la liberación final de oxígeno.
La fotosíntesis almacena la energía lumínica de la luz del Sol en forma de energía química en las moléculas orgánicas que se forman, tanto en la "fijación de carbono" como en la formación de ATP. La fotosíntesis es el conjunto de reacciones químicas que, con la energía de la luz del Sol, convierte dióxido de carbono (un gas atmosférico) y agua (que adquirió por ejemplo absorbiéndola por las raíces), en glucosa (una molécula orgánica) y oxígeno (otro gas que se libera a la atmósfera). Todo el proceso de la fotosíntesis se realiza en dos fases:
·         Fase lumínica: También se le llama fase fotoquímica, pues al captar la luz del Sol como fuente de energía, impulsa todo el proceso químico en el complejo. La clorofila es el pigmento que absorbe la energía lumínica, da el color verde a las plantas y forma parte de todo un complejo (el fotosistema) en la membrana de los tilacoides del cloroplasto. Los fotones de luz captados (energía lumínica) elevan el nivel de electrones en la cadena de transporte de electrones (gradiente electroquímico), lo que produce que se "rompan" las moléculas de agua (disociación o fotólisis del agua) en un átomo de oxígeno, 2 hidrógenos (protones H+) y dos electrones; por lo que se liberará una parte que no se usa (el oxígeno atmosférico) y el resto, que posee carga energética, se utilizará en la formación de ATP (energía química) y NADPH (poder reductor), ambas moléculas necesarias en la segunda fase de la fotosíntesis, la fase oscura. Resumiendo, la reacción de fotólisis del agua:
     2 H2O            4 H+   +  4e -   + O2
·         Fase oscura: Esta fase de la fotosíntesis se realiza en el estroma de los cloroplastos, produciéndose la fijación del dióxido de carbono mediante el ciclo de Calvin. Se denomina fase oscura por ser independiente de la luz, sin embargo, se efectúa tanto de día como de noche. En esta fase el dióxido de carbono atmosférico es capturado por la enzima RuBisCO, y conjuntamente con el resultado de la disociación del agua (en forma de ATP y NADPH), se construyen las moléculas orgánicas. Cada molécula de dióxido de carbono contiene un átomo de carbono (C) y luego de la "fijación de carbono" se llega a un compuesto de 3 átomos C-C-C (el gliceraldehído-3-fosfato o G3P). Estas reacciones se resumen del siguiente modo:
      3 CO2 + 5 H2O +  9  ATP + 6 NADPH/H+        C3H7O6P + 9 ADP +8 Pi  +6 NADP+
En realidad, la fotosíntesis se considera finalizada en este momento, pero luego continúa el proceso de biosíntesis mediante reacciones químicas hasta sintetizar la glucosa, una molécula orgánica tipo azúcar que contiene un esqueleto de 6 carbonos. La glucosa y otros productos intermedios, se modifican posteriormente para construir todas las demás moléculas orgánicas como glúcidos, lípidos y proteínas. Las reacciones químicas descritas en ambas fases y que van desde los reactivos primarios hasta la síntesis de la glucosa.
En el siguiente enlace podrás descargar el formato de la práctica.



Células Madre o Stem Biología V grupos 606, 608 y 609

Células madre El término “célula madre” de por sí puede prestarse a confusión. Existen muchos tipos diferentes de células madre, cada un...